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An approximate theoretical scheme is proposed for calculating the turbulent 
boundary layer at a surface with longitudinal ribs of triangular cross sec- 
tion. 

Recent experiments [1-4] have shown the possibility of a 7-10% reduction (in certain 
conditions) in the frictional drag at an incompressible turbulent boundary layer developing 
along a surface with longitudinal ribs of triangular cross section. An approximate calcula- 
tion method is outlined below for estimating the influence of longitudinal ribs of triangular 
cross section on the drag at the surface with turbulent flow conditions in the boundary 
layer of an incompressible liquid. The method is based on the conventional assumptions 
of the semiempirical theory of a turbulent boundary layer (TBL). No additional experimental 
dependences are required to obtain the theoretical results, which are compared with known 
experimental data. 

i. Two factors are taken into account in flow around a surface with longitudinal ribs 
whose height is small in comparison with the TBL thickness: 

the increment in wet surface, which leads to increase in drag, other conditions being 
equal; 

the appearance of additional solid impermeable surface elements in the wall region 
of the turbulent flow; in view of the impermeability and adhesion conditions, the mean and 
pulsational components of the liquid-particle velocity vector are zero at these elements; 
the appearance of regions close to the wall which have a lower level of velocity pulsations 
than a smooth surface results in decrease in the turbulent mixing of the flow, which may 
lead to reduction in drag in the TBL. 

To estimate the total effect of flow around a ribbed surface, triangular ribs are in- 
vestigated (Fig. i). 

Consider longitudinal flow around triangular ribs. Experiments indicate that reduc- 
tion in drag is observed when the rib height is cormnensurate with the thickness of the vis- 
cous (laminar) sublayer of the TBL. Therefore, the flow in the space between the ribs is 
assumed to be laminar. Suppose that the mean-velocity gradients normal to the rib surfaces 
are considerably greater than the longitudinal gradient. The change in flow rate in the 
boundary layer along the surface is taken into account by a quasi-local approach widely used 
in TBL theory to describe liquid motion in the wall zone [5]. In the coordinate system 
(r, z, 8) in Fig. i, this condition is equivalent to the following assumption regarding 
the velocity components 

v ~ = v ( r , O ) ;  v~=vo=O; Op _ O p _ O p O, 
Or Oz O0 (1) 

where p is the pressure in the space between the ribs. 

Taking account of Eq. (I), the continuity equation is satisfied identically, and the 
system of Navier-Stokes equations reduces to a single equation 

02v 1 O~v 1 Ov 

Or 2 + r ~ 30 ~ q- O. r Or (2) 

The stress in the liquid is determined by the relations 
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Fig. i. Rectangular [X, Y, Z] and cylindrical [r, O, Z] coordinate 
systems associated with ribbed surface. 

1 Ov Ov 
Toz = ~ - - - - ;  Tzr = l x - -  

r O0 Or 

Taking account of Eq. (3), the frictional force within the dihedral angle is determined 
by the integral 

h 1 Ov o=0 F = 2~ ~ dr, 
o r O0 

(3)  

(4) 

where h is the length of a rib of triangular cross section. 

The boundary conditions for v(r, 8) are found from the following considerations: 

a) from the adhesion condition at the walls 

v(r, o) =v(r,  %) = 0; (5)  

v(0, 0 ) = 0 ;  (6 )  

b)  s i n c e  t h e  l i q u i d  be tween  t h e  r i b s  moves  on a c c o u n t  o f  t h e  t a n g e n t i a l  s t r e s s  t r a n s -  
m i t t e d  by the basic flow, the longitudinal velocity at r = h must be specified 

~0 
v(h,  0) ~ A sin 

00 (7) 

The fo rm o f  t h e  r i g h t - h a n d  s i d e  o f  Eq. (7 )  i s  d e t e r m i n e d  by t h e  l i q u i d  a d h e s i o n : a t  t h e  f a c e s  
[ v ( h ,  0 0) = v ( h ,  0) = 0] and t h e  s m o o t h n e s s  o f  v e l o c i t y  v a r i a t i o n  o v e r  t h e  a n g l e  8. The 
constant A is found from the condition 

where du/dy is the mean velocity gradient, which remains to be determined. The condition 
in Eq. (8) is invalid when 80 § 0; therefore, the limiting case 80 + 0 cannot be considered 
in the subsequent formulas containing A. Equation (8) expresses the equality of the mean 
longitudinal velocities of two flows in the region of the upper boundary of the region oc- 
cupied by the ribs: the flow from the real ribs and some conventional turbulent flow at a 
wall with distributed equivalent roughness. Substitution of Eq. (7) into the left-hand 
side of Eq. (8) gives 

du sin ~ / 2  
A ~ uh 

dy 0 o 

The boundary condition is written in the form 

v(h,  O ) = u h  du sinOo/2 sin aO 
dy 0 0--~ (9) 

The general solution of Eq. (2) is sought in the form 

v (r, 0) = R (r) �9 (0), 

1079 



which leads to the following relations on taking account of the boundary condition in Eq. 
(5) 

(D" + k2t9 = O, 
(10) d-7-ct (arCtR') r r - - - - . - - k ~ R  = O. 
(11) 

The general solution of Eq. (i0) takes the form 

�9 (0) = C~ sin kO + C~ cos kO. 

Finding C a = 0, sink0 0 = 0 from Eq. 
Hence 

(5), k = ~n/0 0 may be determined, where n = i, 2, 

nnO 
0 ( 0 )  =CL sia 

Oo ' 

Seekin$_ the solution of Eq. (ii) in the form R(r) = rP, it is found that p = +-k, R(r) = 
D1r k + D2r -~. 

It follows from the boundary condition in Eq. (6) that D 2 = 0. Thus, the particular 
solution of Eq. (2) satisfying the boundary conditions in Eqs. (5) and (6) takes the form 

~n 

- -  ~nO on (r, O) = B~r 0o s i n  
Oo 

The g e n e r a l  s o l u t i o n  o f  t h e  e q u a t i o n  i s  
~ n  

v (r, O) = ~ B,~r % sin nnO 
n =  1 O0 

where the constants B n are determined from Eq. (9) 

dy 0 o 

Thus, the solution of Eq. (2) satisfying Eqs. (5), (6), and (9) is obtained 

(+I~176 o0 sin 0o/2 d u h  s i n - -  
V (r ' O) = ~ O0 l d y  0 0 (12) 

Using Eqs. (4) and (12), the friction on the section of the dihedral angle characterized 
by the coordinate r = r z is determined 

r l  

r O0 ~ Oo _ ~ h  sin 00/2. (13) 

2. The basic equation for the TBL velocity profile in the wall region expresses the 
condition of constant tangential stress in the direction transverse to the surface [5] 

%la-~ ~ ~ ~w ~ COnSt, 

where Ts is the laminar friction; ~T is the turbulent friction; 
stress, equal to the friction at the wall. 

At a smooth surface 
du 

ay 

(14) 

x w is the total frictional 

which corresponds to the frictional force at a section Ax = 2hsinS0/2 (Fig. i) 
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F s  2ph d__u_u sin00/2. 
dy (15 )  

At a ribbed surface, the drag force at this section &x in laminar flow conditions is deter- 
mined by Eq. (13) with r I = h 

F,s h r~ du sin 0--2-~ 
00 dy 2 (16)  

Tak ing  a c c o u n t  o f  Eqs.  (15)  and ( 1 6 ) ,  t h e  a d d i t i o n a l  d r ag  a r i s i n g  a t  a s u r f a c e  w i t h  t r i -  
a n g u l a r  r i b s  i s  o b t a i n e d  

AEs Fs F~a 0 = 21~h[ n _ 1~ d~_j~ sin 0_2o 
' ~, 00 ] dy 2 (17) 

Equation (17) shows that, with the given formulation of the problem in laminar flow condi- 
tions, the longitudinal triangular ribs lead to increase in drag in comparison with a smooth 
surface. Studies [6, 7], brought to our attention by Ginevskii, are of interest in this 
connection. In [6], the possibility of up to 4% reduction in drag in laminar flow condi- 
tions along the ribs in comparison with a smooth wall was indicated. In [7], no positive 
effect of the ribs was found. On the basis of Eq. (17), a relation between ~/s in Eq. (14) 
and the velocity gradient of the mean flow du/dy may be established. In the region 0 
y ~ h cos (00/2) , a liquid layer bounded above by the coordinate y is considered. A tangen- 
tial stress ~(du/dy) and an additional tangential stress due to flow in the corner acts 
on this layer from the wall. Assuming that the part of the ribbed surface defined by the 
coordinate 0 <- r -< y participates in the creation of the additional drag force (Fig. i), 
it follows from Eq. (17) that 

( ) du 00 aF~a--=2~ n - -1  y . . . .  sin 
O0 dy 2 

If this force is now referred to the characteristic dimension 2hsin(00/2), the distance 
between the rib vertices, the reduced value of the additional tangential stress for a liquid 
layer with coordinate y is obtained 

AT~a~ I~ Oo h dy 

In  t h e  r e g i o n  0 ~ y _< h cos  ( 0 0 / 2 )  , t h e  t o t a l  l a m i n a r  t a n g e n t i a l  s t r e s s  i s  

- - I  ~ .  (18) T s ~ 1-4- Oo dy 

In  t h e  r e g i o n  y > h cos  ( 0 o / 2 )  , t h e  u s u a l  f o r m u l a  i s  v a l i d  

du 
dv (19 )  

As 00 ~ 7, Eq. (18)  r e d u c e s  t o  Eq. ( 1 9 ) .  In  t h e  l i m i t  80 + 0, Eq. (18 )  becomes m e a n i n g l e s s ,  
s i n c e  l i q u i d  f l o w  in  t h e  zone  0 < h c o s  ( 0 0 / 2 )  c o r r e s p o n d i n g  t o  t h e  s o l i d  w a l l  c a n n o t  be 
c o n s i d e r e d .  

3. In  TBL f l o w  a round  a s o l i d  w a l l ,  a v i s c o u s  ( l a m i n a r )  s u b l a y e r  i s  fo rmed  in  t h e  
immed ia t e  v i c i n i t y  o f  t h e  s u r f a c e ,  s i n c e  t h e  v e l o c i t y  p u l s a t i o n s  v a n i s h  a t  t h e  w a l l .  The 
form o f  t h e  v i s c o u s  s u b l a y e r  a t  a l o n g i t u d i n a l  r i b b e d  s u r f a c e  i s  shown s c h e m a t i c a l l y  in  
F i g .  1. The t h i c k n e s s  o f  t h e  l a m i n a r  s u b l a y e r  i s  d e n o t e d  by 60. The zone  0 ~ y <_ y ,  i s  
c h a r a c t e r i z e d  by l a m i n a r  f l o w  in  t h e  c o r n e r ,  where  y ,  = 6 0 / s i n  ( 0 0 / 2 )  . I n  t h e  r e g i o n  y > 
y , ,  t h e  f l o w  a r o u n d  t h e  r i b  i s  t u r b u l e n t .  On t h e  l e f t - h a n d  s i d e  o f  Eq. ( 1 4 ) ,  ~T i s  d e f i n e d  
as follows: in the region y, _< y ~ h cos (00/2) 

in the region y > h cos (80/2) 

[ du ~24_ - -  ~w; 
~ = P l 2 \  dg / h h y* (20) 
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h+?s  
0 10 30 ~0~'~0 2 ~0 

F i g .  2. Dependence of  r o u g h n e s s  f u n c t i o n  B on g e o m e t r i c  p a r a m e t e r s  
o f  r i b b e d  s u r f a c e  w i t h  60u, / '0  = 5: 1) B = 30~ 2) 45; 3) 60; 4) 64; 
5) 72; 6) 90; 7) 110~ h+ = h u , / u .  

T~ ~ 9l~ . (21)  

The second term on the right-hand side of Eq. (20) approximately dete.rmines the additional 
stress associated with turbulent flow around the upper parts of the longitudinal ribs as 
a fraction of the total tangential stress acting on.the longitudinal rib. The mixing path 
/='l (y) is usually written in the form I = K(y - Y0), where Y0 is related to the viscous- 
sublayer thickness [5]. In the case of a ribbed surface with a triangular profile, Y0 may 
be chosen to be y, = 60/sin(00/2) (Fig. I), so that 

l ( v )  = • ( v  - -  y , )  = ~ ( v - -  60)  - -  • ( y ,  - -  8o)  = to - -  X6o  - Oo 
sin 2 

where t0(y) is the mixing path at a rough surface. Taking the Van Driest expression for 
the mixing path /0(Y) [5] 

l ~ 2 1 5  - '  yu* ) ]  
26,5a, ' 

it follows that 

�9 26,5v" sin O~ 1 , (22)  
2 

where K = 0.4; u, = ~Tw/9; 50 is the viscous-sublayer thickness at a smooth wall. 

Choosing u.~.as the characteristic velocity and ~/u., as the characteristic linear dimen- 
sion, the basic Eq. (14) is obtained in the following dimensionless form, taking account 
of Eqs. (18)-(22): when 0 ~ ~ = (yu.,/v) ~ 60/sin (00/2) (region I) 

1 + Oo d--~ (23)  

when ~0/sin (00/2) < ~ ~ hcos (00/2) (region II) 

a~ sin 2 

8~ = 0; 

h sin O~ ( 24 ) 
2 

when ~ > hcos (80/2) (region III) 
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dQ h+cos zS_oo Q I , 
1 I | o 7~ eo _~o 40 

-O,Z 

If 
0 lO 2 ~  ~0 

./~ // 

-O,Z 

-0,1 
S 

-O,Z 

-0,l 

Fig. 3. Dependence of the relative decrease in the local drag coef- 
ficient on the geometric parameters of the ribbed surface when 60u..ffv = 
5: I) O 0 = 30~ II) 45; III) 60; IV) 90; i) Re z = 106; 2) 107; 3/'109 �9 

~-q-  • [1 --exp ( 2 6 , 5 )  sin-~ ---i d~) =1. 

In Eqs. (23)-(25), the previous notation is used for the dimensionless quantities u, 

60 , h. 

Integrating Eqs. (23)-(25) with the boundary condition u(~ = 0) = 0 and the matching 
conditions of u(~) at the zone boundaries, the result obtained is: 

in region I 

h In 1+-~- ~-o--1 �9 
. g)~ - a ~ _  1 

00 

in region II 

(25) 

(26) 

u (~). = ul (g = 8 o / s i n - ~ ) - t - - -  ! h sin Oo Oo 

+ _ 

h sin Oo I_ , 
2 . 

~o / 1 
~__ / }--I 

d~; 

(27) 
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Fig. 4. Comparlson of theoretical (curves) and experimental (filled 
points) values of the relative decrease in local drag coefficient 
when 60u,/v = 5: I) e 0 = 64~ II) 72; i) Re z = 106; 2) 107; 3) 109 . 

in region III 

U(~)III = g l I  ~ = hcos -l- 2 J'oo 1 + 
h cos -~ 

/ 
O,Oo ,:? . . . .  /,'a~ 

(28) 

as 00 + ~, Eqs. (26)-(28) reduce to the well-known expressions for a rough surface [5]. 

Calculating the velocity profiles at various values of 60, e0, h from the given for- 
mulas, B = u(g) - u0($) may be determined in the region of logarithmic variation of u(g). 
The dependence u0($) corresponds to the velocity profile at a smooth plate. Knowing B, 
the variation in local frictional coefficient Acf may be determined from the approximate 
formula 

Acs  _ B ] / 2 C j o  , 
CSo (29) 

which is valid when Acf/cf0 < i. Here cf0 corresponds to the velocity distribution u0(g). 

The results of determining B using Eqs. (26)-(28) when 6 o = 5 are shown in Fig. 2. Using 
these data, Eq. (29), and the Schultz-Grunov formulas [8] 

c!o = 0,370 (lg Rez) -2,  584, 

Acf/cf0 is calculated for various Re z = zu~Iv. The results are shown in Figs. 3 and 4. 

For convenience of comparison with experimental data [2], the dimensionless quantity S+ = 
Su,/~/is plotted along the abscissa in Fig. 4, where S is the distance between vertices 
of the longitudinal ribs. The theoretical dependences Acf/cf0 = f(S+) in Fig. 4 are shown 

by curves (unfilled points) and the experimental data by filled points. Calculations by 
the above approximate scheme permit the formulation of the following basic conclusions re- 
garding the influence of the characteristics of triangular longitudinal ribs on the change 
in drag of a solid surface in a turbulent flow. 
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i. The decrease in drag depends significantly on the vertex angle of the triangular 
ribs, other conditions being equal. With decrease in 8o, the reduction in drag is greater. 
At 80 > 90 ~ , the drag reduction disappears. 

2. With fixed 80, the decrease in drag depends on the dimensionless quantity h+ = 
hu,/~ (or S+). When h+ = 0, the gain in drag Acf = 0 (smooth plate); with increase in h+, 

Acf increases, reaching a maximum, and then decreases. At a certain value h*+, Acf = O, 
and then the wall drag increases in comparison with a smooth surface with increase in h+. 

3. Calculations show that, with increase in thickness of the viscous sublayer, the 
reduction in drag at a ribbed surface is greater; this is confirmed by experiments with 
polymer solutions. 

4. Comparison of the calculation results with the known experimental data indicates 
satisfactory qualitative agreement, confirming, in our view, the adequacy of the physical 
model on which the approximate theoretical model proposed here is based. 

NOTATION 

~0, thickness of viscous sublayer; S, distance between the vertices of triangular ribs; 
h, length of triangular ribs; O0, angle between faces of triangular cross section; ~ll, j 
mixing path length; D, v, p, dynamic and kinematic viscosity, density of liquid; u(y), dis- 
tribution of mean velocities in boundary layer; v(r, e), longitudinal-velocity distribution 
in the space between the triangular ribs; p, pressure in the space between the ribs; Tw, 
tangential frictional stress at wall; <, Karman constant; cf, local frictional coefficient 
at ribbed surface; cf0 , local frictional coefficient at smooth surface; Rez, local Reynolds 
number. 
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